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Generalized Langevin equation and recurrence relations

M. Howard Lee
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~Received 16 December 1999!

The generalized Langevin equation~GLE! is a reformulation of the Heisenberg equation of motion, and
hence, an exact equation. It is the basis of the memory function approach, a very widely used method for
studying dynamics of classical and quantum fluids. The GLE was first derived by Mori in a very formal way.
A much simpler and more physically motivated derivation was given by us some years later. In this work we
provide perhaps the simplest possible derivation of the GLE. The simplicity of the derivation helps to bring out
the subtleties present in this important dynamical relationship.

PACS number~s!: 05.40.2a, 05.60.2k
re

p

n

ys

ug
e
e

th

e

e

th

he
the

f
re-

d
n

erm
two
o-

,

ed.
ent
me

ec-

e
-

I. INTRODUCTION

The generalized Langevin equation~GLE! has played an
important role in contemporary studies of the time and f
quency dependent behavior in many particle systems@1#. It
is the basis of the very widely applied memory function a
proach to dynamics. The GLE was first derived by Mori@2#
and an equivalent version by Zwanzig@3#. Although highly
formal—it is in fact a tour de force in formal analysis—
Mori’s derivation is one that is still almost solely relied upo
@4#.

Several years later we gave a much simpler, more ph
cally motivated derivation of the GLE@5#. In this paper we
present yet another derivation but one that is simple eno
to be regarded as almost elementary. It uses rather littl
the recurrence relations formalism. The simplicity, we b
lieve, brings out the underlying process of converting
Heisenberg equation into the GLE.

II. HEISENBERG EQUATION AND RECURRENCE
RELATIONS SOLUTION

Let A be a dynamical variable at timet50. ThenA(t),
the time evolution ofA, may be obtained by solving th
Heisenberg equation of motion,

Ȧ~ t !5 i @H,A~ t !#[ i $HA~ t !2A~ t !H%, ~1!

whereH the Hamiltonian is assumed to beHermitian. We
are concerned witht>0 only. Hence, it is convenient to tak
A(t)50 if t,0 as in the Laplace transform theory.

We regardA(t) as a vector in ad-dimensionalrealized
spaceS. Then one may give a formal solution of Eq.~1! in
the form of an orthogonal expansion as shown below:

A~ t !5 (
k50

d21

ak~ t ! f k . ~2!

Here thef k’s are a complete set of basis vectors that span
spaceS. That is,

~ f k , f k8!50 if k8Þk, ~3!
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where~ , ! denotes an inner product to be decided later. T
coefficientsak are time dependent functions representing
projection ofA(t) onto the basis vectors at timet. Hence,
ak(t)50 also if t,0.

If we choosef 05A(t50)[A, exercising one degree o
freedom always available in an orthogonalization, there
sult the following boundary conditions onak :

ak~ t50!5H 1 if k50

0 if k51,2,3, . . . .
~4!

Given Eqs. ~3! and ~4!, the recurrence relations metho
@6~a!# rests on the following fact. If the inner product is take
to be the Kubo scalar product@6~b!#, both f k’s andak’s sat-
isfy certain unique recurrence relations. They are three-t
recurrence relations except the basal ones which have
terms only. For deriving the GLE we mostly need the tw
term ones:

f 15 ḟ 0 . ~5!

D1a1~ t !52ȧ0~ t !, ~6!

where D1[( f 1 , f 1)/( f 0 , f 0).0, a static quantity, relating
e.g., the f sum rule to the susceptibility. IfD150, A(t)
5A, i.e., d51. We assume that (A,A),`.

The recurrence relations method is now well establish
It has been applied to many problems, contributing to rec
advances in nonequilibrium statistical mechanics. For so
representative examples, see@7#.

III. LANGEVIN EQUATION AND RECURRENCE
RELATIONS FORMALISM

If Eq. ~2! is differentiated with respect to time,

Ȧ~ t !5ȧ0~ t ! f 01 (
k51

ȧk~ t ! f k . ~7!

For Hermitian systems, the length or magnitude of this v
tor A(t) remains constant fort>0, i.e., „A(t),A(t)…
5(A,A). HenceA(t) can change only its direction as th
time evolves. That is to say,Ȧ(t) has a component that re
mains orthogonal tof 05A(t50) always, which may be
1769 ©2000 The American Physical Society
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called anormal component ofȦ(t). At t50, there is only
the normal component. But as time evolves, there app
another component, not orthogonal tof 0 , which may thus be
called aninducedcomponent ofȦ(t).

To show this decomposition ofȦ(t), we introduce a sec
ond set of coefficientsbk(t) for t>0 @bk(t)50 if t,0 also#,
to be justified later. They are defined in a convolution re
tion to ak(t) as shown below. Fork>1,

ak~ t !5E
0

t

bk~ t8!a0~ t2t8!dt8. ~8!

If Eq. ~8! is differentiated,

ȧk~ t !5bk~ t !1E
0

t

bk~ t8!ȧ0~ t2t8!dt8. ~9!

We replace theȧ0 term in the above integral by Eq.~6! and
rearrange it using Eq.~8! as

E
0

t

bk~ t8!a1~ t2t8!dt85E
0

t

ak~ t8!b1~ t2t8!dt8 ~10!

~see Appendix A!. In the first and second terms on the righ
hand side~rhs! of Eq. ~7!, we substitute Eqs.~6! and~8! with
k51, and Eqs.~9!, ~10!, and ~2!, respectively, and finally
obtain

Ȧ~ t !5 (
k51

bk~ t ! f k2D1E
0

t

b1~ t8!A~ t2t8!dt8. ~11!

Observe that the first term on the rhs of Eq.~11! is the
normal component, orthogonal tof 05A for t>0. The sec-
ond term is the induced component since it vanishes w
t50. It is not orthogonal tof 0 for t.0.

IV. RECURRENCE RELATIONS

It now remains to show the boundary conditionsbk(t
50). We can obtain them from Eq.~9! by settingt50, i.e.,

bk~ t50!5ȧk~ t50!, k>1, ~12!

and by using the recurrence relation forak(t), usually known
as RR2@6#,

Dk11ak11~ t !52ȧk~ t !1ak21~ t !, k>0, ~13!

where a21[0 and Dk5( f k , f k)/( f k21 , f k21). Note that
whenk50 in Eq.~13!, we recover Eq.~6!, the basal relation
Setting t50 in Eq. ~13! and using Eq.~4!, we establish at
once that

bk~ t50!5H 1 if k51

0 if k52,3, . . . .
~14!

Hence, if we define

(
k51

d21

bk~ t ! f k[B~ t !, ~15!
rs

-

n

B(t) is the time evolution ofB5 f 15Ȧ(t50) @see Eq.~5!#,
just asA(t) is the time evolution ofA5 f 0 . But B(t) is a
vector in a subspace, sayS1 , spanned byf 1 , f 2 ,..., i.e.,
„B(t),A…50 for t>0. One can further show~see Appendix
B! that bk(t) have a recurrence relation of exactly the sa
form ~13! but operative in the subspaceS1 .

Using Eq.~15!, we put Eq.~11! in the final form,

Ȧ~ t !5B~ t !2E
0

t

w~ t8!A~ t2t8!dt8, ~16!

where w(t)[D1b1(t), sometimes known as the memo
function@1#. We can show that if Eq.~16! is integrated in the
interval (0,t), the rhs yieldsA(t)2A(0) @8#. Equation~16!
is known as the GLE. It really is a reformulation of th
Heisenberg equation~1!. Hence the two are exactly equiva
lent.

V. CONCLUDING REMARKS

This work differs from our earlier derivation@5# in that
the coefficients$bk% are introduced in the beginning. Th
derivation of the GLE is thereby made very simple. It
accomplished without the use of continued fractions. S
Appendix C, where different approaches are briefly co
pared. The simplicity of our present approach also helps
reveal the intricacies in the hierarchy of subspaces in wh
the GLE is structured. As discussed below, we find that
GLE represents a spatial relationship.

AlthoughA(t) andB(t) are both vectors of constant mag
nitude or length, they are not in the same space. We can
some light on the relationship between the two vectors
taking an inner product of Eq.~16! with A,

ȧ0~ t !52D1E
0

t

b1~ t8!a0~ t2t8!dt8. ~17!

Observe that the above is also obtained from Eq.~8! as a
special case ifk51, therein remembering Eq.~6!. The GLE
thus expresses the relationship betweena0 and b1 , and
hence ultimately between the two spacesS andS1 .

As bk were defined with respect toak @see Eq.~8!#, we
can introduce another set of coefficients, say,ck , k>2, now
with respect tobk . Their spaceS2 is a subspace ofS1 . The
relationship between these two spacesS1 and S2 is yet an-
other GLE.

The above interspatial relationships are different from
traspatial ones such as betweena0 anda1 , both of the space
S. This particular relationship, given by Eq.~6!, is known as
the ~first! fluctuation dissipation formula. A second fluctu
tion dissipation formula can be found from the relationsh
betweenb1 andb2 , which is about the subspaceS1 . Higher
ones can be found similarly, e.g., betweenc2 andc3 of the
subspaceS3. Remarkably, the existence of these fluctuati
dissipation formulas was already anticipated by Kubo@9#.

Although Eq. ~16! is purely formal, being an operato
equation, the structure of the GLE makes it rather natural
studying certain physical problems. For example, ifA is the
charge density,Ȧ(t) is proportional to the longitudinal cur
rent by the continuity equation. According to Eq.~16!, the
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total current is composed of the normal and induced pa
They correspond to the intrinsic and diffusive currents@10#.
For another example, letA now be the number density o
neutral particles. If the long time behavior ofȦ(t) is sought,
as in certain physical laws, e.g., Fick’s law, then the induc
part of Eq.~16! can be put readily into an asymptotic for
@11#. Finally, the scalar form of the GLE~17! is a widely
used dynamical equation. Many approximate theories
classical and quantum fluids have been developed base
it, known collectively as the memory function approach@4#.

APPENDIX A: PROOF OF EQUATION „10…, AN IDENTITY

We take advantage of the property thata0(t), ak(t), and
bk(t), k>1, are defined to be zero ift,0. Hence, the lhs of
Eq. ~10! may be immediately written as

E
0

`

bk~ t1!a1~ t2t1!dt15E
0

`

bk~ t1!E
0

t2t1
b1~ t2!

3a0~ t2t12t2!dt2dt1 , ~A1!

where we have used Eq.~8! on the rhs. Now the secon
upper limit may also be taken tò, giving

E
0

`E
0

`

b1~ t2!bk~ t1!a0~ t2t22t1!dt1dt2

5E
0

`

b1~ t2!E
0

t2t2
bk~ t1!a0~ t2t22t1!dt1dt2 , ~A2!

where on the lhs we have exchanged the order of integra
allowed under both limits, and on the rhs we have redu
the upper limit ont1 , allowed sincea0(t)50 if t,0. Fi-
nally, using Eq.~8!,

E
0

`

b1~ t2!ak~ t2t2!dt25E
0

t

b1~ t2!ak~ t2t2!dt2 . ~A3!

QED.
One can also obtain the same result by use of the con

lution theorem of the Laplace transform theory. Letã0(z),
ãk(z), and b̃k(z) denote the Laplace transforms ofa0(t),
ak(t), andbk(t), respectively. If we Laplace transform th
lhs of Eq.~10!, by the convolution theorem we obtain

b̃k~z!ã1~z!5ãk~z!b̃1~z!, ~A4!

where on the rhs we have used

ãk~z!5b̃k~z!ã0~z!, ~A5!

obtained by taking the Laplace transform of the defining E
~8!. The inverse transform of Eq.~A4! gives the desired re
sult Eq.~A3!.

APPENDIX B: RECURRENCE RELATION FOR ˆbk‰

An elementary way to derive the recurrence relation
$bk% is to apply Eq.~8! in Eq. ~13!. We may write Eq.~8! in
an equivalent form. Fork>1,
s.

d

f
on

n,
d

o-

.

r

ak~ t !5E
0

t

bk~ t2t8!a0~ t8!dt8[$bk3a0%. ~B1!

Then

ȧk~ t !5bk~0!a0~ t !1$ḃk3a0%. ~B2!

Given Eq. ~14!, there are two possibilities:k>2 and k
51.

For k>2, we may substitute Eqs.~B1! and ~B2! in Eq.
~13! and obtain

Dk11$bk113a0%52$ḃk3a0%1$bk213a0%. ~B3!

Thus we obtain

Dk11bk11~ t !52ḃk~ t !1bk21~ t !, k>2. ~B4!

For k51, with b0[0,

D2$b23a0%52$ḃ13a0%. ~B5!

Hence,

D2b2~ t !52ḃ1~ t !. ~B6!

We can combine Eqs.~B4! and ~B6! to obtain the final
form:

Dk11bk11~ t !52ḃk~ t !1bk21~ t !, k>1, ~B7!

with b0[0. The above is the recurrence relation for$bk(t)%,
operative in the subspaceS1 , spanned byf 1 , f 2 , . . . ,f d21 .

APPENDIX C: COMPARISON OF DIFFERENT
APPROACHES: AN OVERVIEW

In this Appendix, the main ideas behind Mori’s and o
approaches are described. This will show the progress
has led to our finding the latest derivation, which we belie
is thus far the simplest and clearest. There are two esse
aspects to the existing work@2,5#.

The derivation of Mori is based on the Mori-Zwanz
~MZ! projection operator formalism. This is an orthogona
ization process of abstract Hilbert space. It seems not to h
been recognized that the MZ formalism is a reinvention
the Gram-Schmidt process.

The MZ or Gram-Schmidt process is general, but the g
erality also diffuses the underlying physics~e.g., subspaces
and dimensionality!. The resultant analysis necessarily
heavily formal. It is no surprise that the GLE on occasion h
been incorrectly approximated and even improperly appli

This approach is made all the more abstruse by the p
ence of continued fractions. As given, these continued fr
tions are not tractable, nor is it clear why they should
there. Since the GLE cannot be solved without solving
continued fractions, the GLE appeared to some to be
empty reformulation.

The recurrence relations formalism@5# removes both dif-
ficulties, the first by taking on realized spaces. Realiz
spaces have unique orthogonalization processes. They
generally much simpler than the Gram-Schmidt, as has b
demonstrated@6~b!#. One can also trace to this realized spa
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the origin of the continued fractions that appear in the ti
evolution problem.

Our earlier work @5# is in effect a reanalysis of the
Heisenberg equation following Mori, modified by a new o
thogonalization process. The analysis is thus greatly sim
fied. Also the continued fractions are made tractable—
c
s.:
n.

se

v.
-

v.
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tt.
e

li-
d

meaningful—removing the second difficulty.
The present work recognizes the essentialness of rea

subspacesfrom the outset. This idea allows us to transfor
the Heisenberg equation into the GLE directly. Continu
fractions are not needed. It suffices to have only an elem
tary knowledge of the recurrence relations method.
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